Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders
نویسندگان
چکیده
Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders.
منابع مشابه
Long-term pathological consequences of prenatal infection: beyond brain disorders.
Prenatal immunological adversities such as maternal infection have been widely acknowledged to contribute to an increased risk of neurodevelopmental brain disorders. In recent years, epidemiological and experimental evidence has accumulated to suggest that prenatal exposure to immune challenges can also negatively affect various physiological and metabolic functions beyond those typically assoc...
متن کاملMicrobial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring
Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with...
متن کاملNeurodevelopmental Outcome of Patients With Agenesis of Corpus Callosum
Background: Agenesis of Corpus Callosum (ACC) is a type of brain dysgenesis with various clinical manifestations. Objectives: This study aimed to investigate the clinical and neurodevelopmental outcomes of patients with ACC. Materials & Methods: In this cross-sectional study, the clinical and neurodevelopmental conditions of 62 patients with complete ACC referred to subspecialty clinics of pe...
متن کاملMaternal obese-type gut microbiota differentially impact cognition, anxiety and compulsive behavior in male and female offspring in mice
Maternal obesity is known to predispose offspring to metabolic and neurodevelopmental abnormalities. While the mechanisms underlying these phenomena are unclear, high fat diets dramatically alter intestinal microbiota, and gut microbiota can impact physiological function. To determine if maternal diet-induced gut dysbiosis can disrupt offspring neurobehavioral function, we transplanted high fat...
متن کاملEmerging Roles for the Gut Microbiome in Autism Spectrum Disorder.
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that affects one in 45 children in the United States, with a similarly striking prevalence in countries around the world. However, mechanisms underlying its etiology and manifestations remain poorly understood. Although ASD is diagnosed based on the presence and severity of impaired social communication and repetitive behav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 155 شماره
صفحات -
تاریخ انتشار 2013